C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name : Numerical Methods

	Subject	Code : 4SC04MTE1	Branch: B.Sc.(Mathematic	s, Physics)						
	Semeste	er: 4 Date: 16/05/2016	Time : 02:30 To 05:30	Marks : 70						
	Instructio	ons:								
	(1)	Use of Programmable calculator &	z any other electronic instrument is pro-	ohibited.						
	(2) (3) (3)	Instructions written on main answ Draw neat diagrams and figures (i	er book are strictly to be obeyed.							
	(4)	Assume suitable data if needed.	r necessary) at right places.							
0.1		Attempt the following question	ng	(14)						
ц-у	a)	Write Simpson's one third rule.	115	(14)						
	b)	Write n^{th} approximation of New	wton-Raphson method.	(01)						
	c)	Give value of $f'(x)$ by Newton	n's forward interpolation formula.	(01)						
	d)	What is the value of <i>h</i> ?		(01)						
	e)	Newton-Raphson method has second order convergence. Is following statement (01 is true or false?								
	f)	Write Picard's formula for $\frac{dy}{dt} = \frac{1}{2}$	f(x,y).	(01)						
	g)	How many ways we can find the	e solution of $\frac{dy}{dx} = f(x, y)$ with $f(x_0)$	$= y_0. \text{Give}$ (01)						
	b)	any two names of method. What is the value of $f''(x)$ in $x''(x)$	onoral by Stirling inter polation formul	o? (01 `						
	i)	Find the values of $\int_{-1}^{1} e^{x} dx$ with	h = 1/2 by Transmiddle whe	$\begin{array}{c} a: (01) \\ (02) \end{array}$						
	•)	Find the values of $\int_0^\infty e^{-x} dx$ with	n = 1/2 by Trapezoidal fulle.	(02)						
	J)	Give value of $a \otimes b$ such that for $f(x) = x^2 + x = 5$	of of $f(x) = 0$ hes between $a \otimes b$, where $b \otimes b $	ere (02)						
	k)	Give general formula for Modif	ied Euler Method.	(02)						
Atte	empt any f	four questions from Q-2 to Q-8.								
Q-2	2	Attempt all questions		(14)						
	a)	Find a root of $f(x) = 3x - 6 - decimal places.$	$\log_{10} x$ using Iteration Method up to f	iour (07)						
	b)	Evaluate $\int_0^{10} e^x dx$ by Weddle's	s rule with $h = 1$.	(07)						
Q-3	5	Attempt all questions		(14)						
	a)	Prove that Newton-Raphson Me	thod has second order convergence.	(07)						
	b)	Using Picard's Method, obtain s equation $\frac{dy}{dy} = x + y; y(0) = 1.$	solution up to the fifth approximation t Also find $y(0.1)$.	o the (07)						
		- dx								

Page 1 || 2

Q-4	a)	Attempt all questions Given $y' = x^2 + y^2$, $y(0) = 1$. Determine $y(0.1)$ and $y(0.2)$ by Modified Euler Method								
	b)	Find a positive root of $f(x) = x - \cos x$ by False Position Method correct to three decimal places. (0)								
Q-5	a) b)	Attempt all questions(1)Derive $f'(x)$ by Newton's Forward Interpolation Formula.(1)Compute $y(2)$ if $y(x)$ satisfies the equation $\frac{dy}{dx} = \frac{1}{2}(x+y)$ given $y(0) = 2$,(1) $y(0.5) = 2.636$, $y(1) = 3.595$ and $y(1.5) = 4.968$. Using Milne's Method.(1)								
Q-6	a)	Attempt all questions Find $y'(x)$ and $y''(x)$ at $x = 6$. For the function $y = f(x)$ given in the table:							(14) (07)	
	b)	<i>y</i> Obtain appr	2.7183 oximate val	3.3210 ue of the ro	4.0552 ot of $x = si$	$\frac{4.9530}{n x + \frac{\pi}{2} by}$	6.0196 Graphical N	7.3891 Iethod.	(07)	
Q-7	a)	Attempt all questions((Compute $f'(0.8)$ and $f''(0.8)$ using the following table:(x 0.40.60.70.91.2 $f(x)$ 1.021071.105461.0251171.102001.010117								
	b)	$\frac{f(x)}{\text{Derive New}}$ using this for	1.0810 ton-Raphso ormula.	7 1.185 n Iteration f	ormula for	<u>.5517 1</u> ⁿ √ <i>R</i> . Also f	.43309	1.81066 ue of $\sqrt[3]{5}$	(07)	
Q-8	a)	Attempt all questions Using Runge-Kutta Method of fourth order, solve the following for $y(0.1)$ and $v(0.2)$ given that $\frac{dy}{dt} = xy + y^2$, $v(0) = 1$ with $h = 0.1$.								
	b)	The velocity v of a particle at distance's from point on its path is given by the following table: (0)								

<i>s</i> (m)	0	10	20	30	40	50	60
v (m/s)	47	58	64	65	61	52	38

Find the time taken to travel 60 meter. Using Simpson's one-third rule.

Page 2 || 2